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Abstract
It is shown that there exists a geometric quotient of the subscheme of stable
points of Gr(C((z))⊕r ) under the action of Sl(r, C). The consequences in terms
of vector bundles on an algebraic curve are studied.
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1. Introduction

In this paper, it is shown that there exists a geometric quotient of the subscheme of stable
points of Gr(C((z))⊕r ) under the action of Sl(r, C) following GIT techniques.

It is worth recalling that Sato Grassmannians have shown up as a fruitful tool for a variety
of problems, e.g. integrable systems [AHP, DJKM, SS], moduli spaces [AMP, M, SW] and
field theories [KNTY, MP, Wi]. Because of the existence of symmetries one is led to wonder
about the existence of quotients. A standard (and powerful) procedure to carry out such a
study is the geometric invariant theory [MFK]. We hope to apply our results to some issues
arising in CFT on Riemann surfaces. These results are also closely related to the study of
algebraic solutions of the multicomponent KP hierarchy as well as to the connection between
vector bundles and Yang–Mills connections on Riemann surfaces. Due to the length restriction
we cannot be more explicit on these relationships; however, the physical reader is directed to
chapter 8 of [MFK], and [KNTY, Wi] (and references therein).

However, the main obstacle when applying GIT to our situation comes from the fact that
Sato Grassmannians are not schemes of finite type. The second section is devoted to providing
a way to overcome this problem and shows how Sato Grassmannians can be constructed from
the schemes of finite type (theorem 2.1). Section 3, which recalls the notion of stability from
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[CMP], shows a similar result for the subscheme of the Grassmannian consisting of stable
points and finishes with the existence of the geometric quotient (theorem 3.4). Here, due to
the restrictions on length and for the sake of clarity, we have only dealt with stability but a
similar study can be carried out for semistability. Finally, as an application of our results, we
use the Krichever map to study the relation between our results and the well-known results for
the case of vector bundles on algebraic curves.

Let us finish this introduction by pointing out a future line of research. Once the quotient
by Sl(r, C) has been constructed, one should develop a theory of stability under Sl(r, C[[z]])
and discuss the possible quotients. As an application, one should study the space of invariants
of H 0(Gr(C((z))), Det∗) (Det being the determinant line bundle) since these spaces are closely
related to the spaces of conformal blocks in conformal field theory.

2. Preliminaries on infinite Grassmannians

In this section, we recall some definitions and results about infinite Grassmannians. For more
details on this subject we point the reader to [AMP] and [CMP].

Let us begin with the definition of infinite Grassmannians. Let V be a C-vector space
and V+ a subspace of V . We say that a subspace A ⊂ V is commensurable with V+ when
dimC(A + V+)/(A ∩ V+) < ∞ and we denote this by A ∼ V+. The pair (V , V+) is assumed to
satisfy

• ⋂
A∼V+

A = (0),

• V = lim←−
A∼V+

V/A.

The infinite Grassmannian Gr(V , V+) (briefly Gr(V ) if we fix V+) is the C-scheme whose
rational points are

Gr(V ) =
{

C -subspaces F ⊂ V such that
dimC V/(V+ + F) < ∞, dimC F ∩ V+ < ∞

}
.

The index or characteristic of F ∈ Gr(V )

χ(F ) = dimC(F ∩ V+) − dimC

(
V

F + V+

)
is locally constant as a function of F. If Grχ (V ) denotes the set where the index takes the value
χ ∈ Z, then

Gr(V ) =
∐
χ∈Z

Grχ (V )

is the decomposition in connected components.
In particular, if V is a finite-dimensional vector space, the points of Grχ (V ) are those

subspaces of F where dimC F = χ(F ) + dimC(V/V+).
Henceforth, we will work with the case V := C((z))⊕r and V+ := C[[z]]⊕r (r � 0) and

fix χ ∈ Z. Let us recall how the infinite Grassmannian Grχ (V ) can be expressed in terms
of finite Grassmannians Grχ (V[−m,m)) where V[−m,m) := (z−mV+)/(z

mV+),m ∈ N. More
general, we introduce the notation V[−m,i) := (z−mV+)/(z

iV+), with m, i ∈ N.
Let us consider

Ũm,m := Grχ (V[−m,m)),

Ũm,m+1 :=
{

Fm+1 ∈ Grχ (V[−(m+1),m+1)) such that
Fm+1 + V[−m,m+1) = V[−(m+1),m+1) and Fm+1 ∩ V[m,m+1) = (0)

}
,

Ũm,i := �−1
i−1(Ũm,i−1), i > m + 1,

2
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where �m is the rational map Grχ (V[−(m+1),m+1)) −→ Grχ (V[−m,m)) defined by

�m(Fm+1) := (Fm+1 ∩ V[−m,m+1)) + V[m,m+1)

V[m,m+1)

whose domain of definition is the open subscheme Ũm,m+1.
The schemes Ũm,i s fit into the diagram

· · · U0,3
Φ2

U0,2
Φ1

U0,1
Φ0 Grχ(V[−0,0))

· · · U1,3
Φ2

U1,2
Φ1 Grχ(V[−1,1))

· · · · · · · · ·

(2.1)

whose squares are Cartesian. Furthermore, note that {(Ũm,i, �i−1)}i�m is an inverse system
for each m. From proposition 1.5.1 of [EGA-II], one obtains that �i−1 : Ũm,i → Ũm,i−1 is
an affine morphism for all i and, hence, the inverse limit Um := lim

i�m
←− Ũm,i is an open

subscheme of Grχ (V ). Explicitly, one has the following description:

Um = {F ∈ Grχ (V ) s.t. F + z−mV+ = V and F ∩ zmV+ = (0)}.
Now, section 2 of [CMP] yields the following.

Theorem 2.1. For every m > 0, Um is an open subscheme of Um+1. Moreover, the open sets
Um are a covering of Grχ (V )

Grχ (V ) =
⋃
m>0

Um =
⋃
m>0

lim←−
i�m

Ũm,i . (2.2)

In particular, a subspace F ∈ Grχ (V ) corresponds to a family of finite-dimensional
subspaces, {F[−i,i)}i�m0 , where F[−i,i) ∈ Ũm0,i ⊂ Grχ (V[−i,i)). Explicitly, given F a family
F[−m,i) is constructed as follows:

F[−m,i) := (F ∩ z−mV+) + ziV+

ziV+
, i � m � m0.

Conversely, a family {Fm,i} ∈ Um determines a subspace F by the expression

F :=
⋃

m�m0

lim←−
i�m

(Fm,i ∩ V[−m,i)).

In particular, it holds that F ∩ z−mV+ = lim←−
i�m

(Fm,i ∩ V[−m,i)).

3. Geometric quotient by the action of Sl(r, C)

We will prove that the set of stable points of Grχ (V ) admits a geometric quotient by the action
of the group Sl(r, C). Recall [CMP] has proposed a natural notion of stability for points of
the infinite Grassmannian Grχ (V ) with respect to the action of the reductive group Sl(r, C).
That proposal was based on the application of GIT to the finite Grassmannians, Grχ (V[−m,m)).
Then, the finite and infinite Grassmannians were related with the help of diagram (2.1) since
Sl(r, C) acts on each term and all maps are equivariant. The following fundamental property
was proved.

3
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Proposition 3.1 ([CMP], proposition 3.6). Let Ũ s
m,i denote the set of stable points of Ũm,i

w.r.t. the action of Sl(r, C).
It holds that �−1

i

(
Ũ s

m,i

) ⊆ Ũ s
m,i+1. In particular, if {F[−i,i)}i�m are associated with

F ∈ Gr(V ) as in equation (2.2) and F[−i0,i0) is stable, then F[−i,i) is stable for all i � i0 � m.

The definition is as follows.

Definition 3.2 ([CMP], definition 3.7). Let F[−i,i) ∈ Um,i ⊂ Gr(V[−i,i)) be those subspaces
associated with a point F ∈ Gr(V ) by (2.2).

The point F is (semi)stable for the action of Sl(r, C) if there exist m ∈ N and i � m such
that F[−i,i) is (semi)stable.

We denote the set of the stable and semistable points of Gr(V ) by Gr(V )s and Gr(V )ss ,
respectively.

The above proposition also implies the following.

Proposition 3.3. Let us denote by Um,m := Ũ s
m,m and Um,i := �−1

i−1(Um,i−1) ⊆ Ũ s
m,i for each

m ∈ N and i > m.
It holds that {lim

i�m
←− Um,i |m > 0} is an increasing sequence of open subsets and that

Grχ (V )s =
⋃
m>0

lim←−
i�m

Um,i . (3.1)

Proof. To begin with, note the following facts; first, {(Um,i,�i)}i�m is an inverse system for
each m; second, there is a diagram

lim←−
i≥m

Um,i (Um)s

lim←−
i≥m+1

Um+1,i (Um+1)s

and, finally, that Grχ (V )s = ⋃
m>0(U

m)s (by (2.2)).
Now, let F ∈ Grχ (V ) be a stable point. Let {F[−i,i)} be the subspaces associated with

F. From proposition 3.1 there exists m0 such that F[−i,i) ∈ Ũ s
m,i for all m and for all i > m0.

Then, {F[−i,i)} defines a point of lim
i�m

←− Um,i ⊆ (Um)s for all m � m0. And the conclusion

follows. �

From theorem 1.10 of [MFK] we know that the open set of stable points of Grχ (V[−m,m))

for the action of Sl(r, C) does admit a geometric quotient. Furthermore, the open subscheme
Um,i , which is acted upon by Sl(r, C) and whose points are stable, also admits a geometric
quotient (see ‘converse’ 1.13 in [MFK]). We denote by pm,i : Um,i → Ym,i this quotient. The
composition pm,i ◦ �i factors through pm,i+1, that is

Um,i+1
Φi

pm , i+1

Um,i

pm , i

Ym,i+1
Θm , i

Ym,i

(3.2)

4
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We have an inverse system {(Ym,i,�m,i)}i�m for each m > 0. Let Ym := lim
i�m

←− Ym,i

and let pm be the morphism induced by {pm,i} between the inverse limits

pm: lim←−
i�m

Um,i −→ Ym = lim←−
i�m

Ym,i .

Observe that the family {Um,i} fits into a diagram similar to (2.1). Then, applying the properties
of inverse limits, one gets a commutative diagram

lim←−
i≥m

Um,i

pm

lim←−
i≥m+1

Um+1,i

pm+1

Y m
γm

Y m+1

for each m. Since γm : Ym ↪→ Ym+1 are open immersions, it makes sense to consider the
scheme Y defined by recollement of {Ym, γm}; or, in other words

Y :=
⋃
m>0

Ym. (3.3)

Finally, note that there is a map induced by the pm s

p: (Grχ (V ))s =
⋃
m>0

lim←−
i�m

Um,i −→ Y.

Now, it is straightforward to prove the main result of this section.

Theorem 3.4. The scheme Y is the geometric quotient of Grχ (V )s by the action of Sl(r, C).

Proof. Recall that both Grχ (V )s and Y are expressed by a recollement of open subschemes
(see equations (3.1) and (3.3)). Further, it is straightforward to check that the claim will follow
if we prove that Ym is the geometric quotient of lim

i�m
←− Um,i for the action of Sl(r, C) for all

m. In order to this fact we follow the items of definition 0.6 of [MFK].

• The morphism pm is Sl(r, C)-equivariant. It holds because the morphisms of diagram
(3.2) are Sl(r, C)-equivariant.

• pm is surjective. We consider a sequence {Gi}i�m ∈ Ym. Since pm,i is surjective, we
may choose Fi ∈ Um,i such that pm,i(Fi) = Gi . Having in mind that the fiber of Gi is
equal to its orbit and that �i(Fi+1), Fi ∈ p−1

m,i(Gi), there exists gi+1 ∈ Sl(r, C) such that
�i(gi+1Fi+1) = Fi , for each i � m.
We now check that the sequence

{F ′
m := Fm, F ′

m+1 := gm+1Fm+1, F
′
m+2 := gm+1gm+2Fm+2, . . .}

is a preimage of {Gi}i�m by pm.
• For any W ⊆ Ym,W is open if and only if (pm)−1(W) is open.

Since pm is a continuous map, (pm)−1(W) is open for all open subsets W ⊆ Ym. Let
us now show the converse. Let W ⊆ Ym be a subset such that (pm)−1(W) is open.
From chapter I, section 4, no 4 of [B], we know that any open subset of the inverse limit
lim
i�m

←− Um,i is of the type
⋃

i�m

(i)
−1(Xi), where i are the projections of the limit in each

of its factors and Xi are open sets of Um,i .

5
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Note that Xi = p−1
m,i(pm,i(Xi)) and, since pm,i is a geometric quotient, it follows that

pm,i(Xi) ⊆ Ym,i is open. Then, the surjectivity of pm implies that

W = pm((pm)−1(W)) = pm

⎛⎝⋃
i�m

(i)
−1(Xi)

⎞⎠
=

⋃
i�m

pm((i)
−1(Xi)) =

⋃
i�m

(ji)
−1(pm,i(Xi))

and we conclude that W ⊆ Ym is open.
• It holds that

Im �m = lim←−
i�m

Um,i ×Ym lim←−
i�m

Um,i,

where �m is the morphism

�m : Sl(r, C) × lim←−
i�m

Um,i → lim←−
i�m

Um,i × lim←−
i�m

Um,i

(g, F ) 
→ (F, gF ).

The inclusion ⊆ is straightforward, so let us prove the reverse one ⊇. Let us take an
element

(F = {Fi},G = {Gi}) ∈ lim←−
i�m

Um,i ×Ym lim←−
i�m

Um,i,

therefore, it is verified that pm,i(Fi) = pm,i(Gi) for every i � m. By the properties
of pm,i , there exist gi ∈ Sl(r, C) for i � m such that Fi = giGi . If we prove that
gi = gj for all i, j � m, then we obtain F = gG for an element g ∈ Sl(r, C) and, thus,
(F,G) ∈ Im �m as was to be shown.
So, let us check that all gi s are equal. Take i > j � m arbitrary, and observe that

gi1Gi1 = Fi1 = �i1 · · ·�i2−1Fi2

= �i1 · · ·�i2−1gi2Gi2 = gi2Gi1 . (3.4)

We conclude that g−1
i1

gi2 , g
−1
i2

gi1 ∈ Stab(Gi1) where Stab is the stabilizer of a point for
the action of a group.

Now, as Gi is a stable point for every i � m, we know that Stab(Gi) is a finite set
(lemma 3.17 of [N]) and we easily have the inclusions

Stab(Gm) ⊇ Stab(Gm+1) ⊇ · · · .
Therefore, there exists i0 � m such that Stab(Gi) = Stab(Gi+1) for every i � i0. For
i < i0 we get g−1

i gi0 ∈ Stab(Gi) by (3.4). For i � i0, we obtain g−1
i gi0 ∈ Stab(Gi0) =

Stab(Gi) by (3.4) and by the equality of the stabilizers.
So for every i � m, we deduce

Fi = giGi = gi

(
g−1

i gi0Gi

) = gi0Gi.

We conclude that F = gi0G and therefore (F,G) ∈ Im �m.
• The morphism OYm → (pm)∗Olim

i�m
←− Um,i

induces an isomorphism of OYm and the

invariants of (pm)∗Olim
i�m

←− Um,i
under Sl(r, C). This is true because

OYm
= lim−→

i�m

OYm,i
� lim−→

i�m

(
OSl(r,C)

Um,i

) =
(
O lim←−

i�m

Um,i

)Sl(r,C)

.

�

6
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4. Moduli of vector bundles with trivialization

In this section, we will study the relation between the moduli spaces of vector bundles with
finite trivialization and those with formal trivialization. Then, that relation will be interpreted
in terms of Grassmannians. For the construction of the moduli spaces of vector bundles
with finite trivialization in terms of the finite Grassmannian we follow [S, AM]. A triple
(C, p, tp) consisting of an irreducible non-singular projective curve over C, a smooth point

and an isomorphism of C-algebras Ôp
∼→ C[[z]] will be fixed from now on. Following [M],

we know that there is a C-scheme, M∞(r, d), whose set of rational points is given by

M∞(r, d) :=
{

pairs (F, δ) s.t. F is a rank r degree d vector bundle

on C and δ is an isomorphism F̂p
∼→ Ô⊕r

p

}
,

where we write (F, δ) ∼ (F ′, δ′) if and only if there exists an isomorphism of sheaves,
f : F ∼→ F ′ compatible with δ and δ′.

The Krichever map for M∞(r, d) is the scheme homomorphism given by

K:M∞(r, d) −→ Gr(V , V+)

(F, δ) 
−→ (tp ◦ δ)(H 0(C \ {p},F))

with V := C((z))⊕r and V+ := C[[z]]⊕r . Since this map is a closed immersion, the scheme
M∞(r, d) can be thought as a closed subscheme of Gr(V ).

In [S] (see also [AM]) trivializations of finite order have been considered. It has been
shown that there exist C-schemes Ms

m,i(r, d), for each pair (i,m) with i � m > m0 :=
2g(r + 1) (where g is the genus of C), whose set of rational points is given by

Ms
m,i(r, d) :=

⎧⎪⎨⎪⎩
(F, δi) s.t. F is a rank r degree d stable v.b.

on C, δi is a surjection F → (OC/OC(−ip))⊕r

and H 0(C,F(−mp)) = 0,H 1(C,F(mp)) = 0

⎫⎪⎬⎪⎭ .

The equivalence relation is analogous to the previous one.
The Krichever map for Ms

m,i(r, d) is the scheme homomorphism given by

Km,i :Ms
m,i(r, d) ↪→ Grχ (V[−i,i))

(F, δi) 
→ (tp ◦ δi)(H
0(C \ {p},F(ip)))

(4.1)

with χ = d + r(1 − g) and V[−i,i) = z−iV+/z
iV+ (see [AM], corollary 2.1).

Let us write down the maps relating these spaces. First, note that Ms
m+1,i (r, d) ⊂

Ms
m,i(r, d) is an open subscheme for each i � m + 1.

Let us now define an affine and surjective map

�i :Ms
m,i+1(r, d) −→→Ms

m,i(r, d)

which maps (F, δi+1) to (F, δi) where δi is given by

F δi+1−→→ (OC/OC(−(i + 1)p))⊕r −→→ (OC/OC(−ip))⊕r .

Finally, we introduce the rational map

M∞(r, d) −→ Ms
m,i(r, d)

(F, δ) 
→ (F, δi)
(4.2)

whose domain of definition is the open subscheme consisting of those pairs (F, δ) such that F
is stable and H 0(C,F(−m)) = H 1(C,F(m)) = 0. Here δi is constructed from δ, since giving
an isomorphism δ : F ∼→ Ô⊕r

C,p is equivalent to giving a compatible family of surjections {δi}.
7
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Summing up, we have the diagram

· · · Ms
m0 ,m0 +3

Φm 0 +2 Ms
m0 ,m0 +2

Φm 0 +1 Ms
m0 ,m0 +1

Φm 0 Ms
m0 ,m0

· · · Ms
m0 +1,m0 +3

Φm 0 +2 Ms
m0 +1,m0 +2

Φm 0 +1 Ms
m0 +1,m0 +1

· · · · · · · · ·

From these arguments one deduces the following.

Theorem 4.1. There is an identification

{(F, δ) ∈ M∞(r, d) s.t. F is stable} =
⋃

m�m0

lim←−
i�m

Ms
m,i(r, d).

The following proposition unveils the relation between this result and theorem 2.1.

Proposition 4.2. Let m � m0. The diagram

lim←−
i≥m

Ms
m,i(r, d) Um = lim←−

i≥m

Um,i

{(F , δ) ∈ M∞(r, d) s.t. F is stable}
K

Grχ(V )

is Cartesian and the four maps are Sl(r, C)-equivariant.

Proof. Given (F, δ) ∈ M∞(r, d) such that F is stable, we know from theorem 2.7 of [M]
(see also [O]) that the formal trivialization δ induces canonical isomorphisms

F ∩ zmV+ � H 0(C,F(−m))

V

F + z−mV+
� H 1(C,F(m))

for every integer m. Furthermore, the stability ofF implies the stability ofK((F, δ)) ∈ Grχ (V )

w.r.t. the action of Sl(r, C) (see [CMP], section 3.2).
Then, the Krichever map (4.1) takes values in Um,i ⊆ Grχ (V[−i,i)); taking inverse limits

one gets the arrow on the top row. Now, it is easy to check that

K(F, δ) ∈ Um ⇐⇒ H 0(C,F(−m)) = H 1(C,F(m)) = 0

and the conclusion follows. �

Remark 4.3. As a consequence of these results and those of section 2, it holds that

K((F, δ)) =
⋃

m�m0

lim←−
i�m

(Km,i(F, δi) ∩ V[−m,i)).

Remark 4.4. Let us write down the condition that (F, δ), (F ′, δ′) ∈ M∞(r, d) have the same
image in the quotient. Since their images under p are equal, there exists g ∈ Sl(r, C) such

8
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that K((F, δ)) and g(K((F ′, δ′))) coincide or, what is tantamount, there is an isomorphism
ḡ : F ∼→ F ′ making commutative the following diagram:

F
ḡ

F̂p
δ
∼ Ô⊕r

p

g

F F̂p
δ
∼ Ô⊕r

p

Theorem 4.5. Let (F, δ) ∈ M∞(r, d). Then, (F, δ) is not stable (as a point of Gr(V )) if and
only if there exists a vector subbundle G ⊂ F with a formal trivialization, γ : Ĝp

∼→ Ô⊕l
p with

l < r , and g ∈ Sl(r, C) such that the following two conditions hold:

• µ(G) � µ(F) where µ is the slope of the bundle;
• δ|Ĝp

= g ◦ γ .

Proof. Let F = K((F, δ)). Recall that theorem 3.11 of [CMP] states that F ∈ Gr(k[[z]]⊕r )

is not stable w.r.t. the action of Sl(r, C) if and only if there exist l < r and g ∈ Sl(r, C) such
that 1

l
χ(F ∩ gV l) � 1

r
χ(F ) where V l denotes the subspace k((z))⊕l ⊕ 0 ⊕ · · · ⊕ 0 ⊆ V .

Let (F, δ) be a non-stable point and let l and g be as above. Then, from proposition 4.2
of [CMP] (see also proposition 1 of [O]), the subspace F ∩gV l lies on Gr(k((z))⊕l) and gives
rise to a vector bundle on C,G endowed with a formal trivialization γ satisfying the conditions
of the statement.

The converse can be proved similarly. �
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